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The problem of the motion of an orbital pendulum suspended on a tether is considered. The existence of relative equilibria is 
investigated, as well as the sufficient conditions for their stability. Particular attention is paid to the study of coupling reactions, 
in particular, the question of whether certain relative equilibria are not realizable because the tether does not permit compression. 
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The problem of the motion of an orbital pendulum, that is, a pendulum whose suspension point is fixed 
in a rigid body moving in a central Newtonian force field, was first formulated, it seems, by Synge [ 11, on 
the assumption that the pendulum is a point mass suspended on a weightless undeformable rod at the 
centre of mass of the body, Radial, tangential and normal relative equilibria of such a pendulum were 
found, and the necessary conditions for their stability were investigated. The same problem has been 
considered on the assumption that the suspension point of the pendulum may be anywhere in the body. 
In that formulation of the problem, again, all relative equilibria of the pendulum have been determined 
and the necessary conditions for their stability have been investigated. The problem of the relative equilibria 
of a physical pendulum has been investigated [3], and, in particular, all relative equilibria have been 
obtained, and both the necessary and sufficient conditions for their stability have been presented. 

A natural generalization of such problems is to analyse the orbital dynamics of coupled systems of 
one or more rigid bodies. For such systems, several relative equilibria have been found analytically for 
two-element orbital systems, and their stability conditions have been studied. Other generalizations of 
the problem are possible [7]. 

Below, unlike to the problems previously considered, it will be assumed that the point mass is 
suspended from a weightless inextensible tether. We will consider the question of which of the previously 
found relative equilibria [2] continue to exist under the assumptions made here and we will investigate 
the sufficient conditions for their stability. 

1. FORMULATION OF THE PROBLEM 

Consider the motion of a mechanical system consisting of a rigid body of mass ml with centre of mass 
at a point G, and a point mass Q of mass m2 connected to the body by an inextensible thread of length 
1. The other end of the thread is attached to the rigid body at a point P. Motion occurs under the action 
of forces of central Newtonian attraction with centre of attraction at a point ZV, which is fixed in absolute 
space. 

Suppose the system is small compared with its distance from the attracting centre. Then we may 
assume with satisfactory accuracy that the motion of the centre of mass of the entire system-the point 
0, such that 

(m, + m2)N0 = m,NG + m2NP 

and the motion of the system about the centre of mass are separable. It will henceforth be assumed 
that the point 0 is describing a circular Keplerian orbit. As usual, we introduce an orbital frame of 
reference Gxyz, in which the x axis points along an orbital tangent, the y axis is perpendicular to the 
orbital plane and the z axis points along the radius NO. Finally, as in previous treatments [2], we will 
assume that the rigid body does not change its orientation relative to the orbital frame of reference, 
while the point G may change its position relative to that frame. 
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Suppose that, in projections onto the axes of the orbital frame of reference, GP = (a, b, c), 
PQ = (t, q, 0, GQ = (x; y, z). Using the resulting small parameter, we expand the potential of the 
forces of Newtonian gravitation in powers of that parameter up to terms of order two. Then, if o is the 
orbital angular velocity of the entire system and M = mlm@l + mz) is the reduced mass, the 
transformed potential of the system may be written as (cf. [2,3]) 

W = MC&b + T# - 3(c f r3*,rr (1.1) 

The system must obey a unilateral constraint 

f=52+$+62-12 40 (1.2) 

To determine relative equilibria, we use Routh’s method, investigating the critical points of the function 

w,= w+hf72 (1.3) 

The constraint will then be enforced if X L 0 at the equilibrium in question. The critical points of the 
function (1.3) are determined by the equations 

?!++o, ?!$ = Mw2(b+q)+hq=0, 

awk - -_- 
x 

3MoZ(c+<)+h~=0 
(1.4) 

together with (1.2). A solution with A > 0 corresponds to a taut tether. This condition singles out those 
of the previously found solutions [2] that correspond to the conditions of the problem. 

By the first equation of (1.4), either X = 0 or 5 = 0. The first condition means that the tether is not 
taut. Then, by the second and third equations of (1.4), it can be shown that q = -6, 5 = -c. Thus, the 
point Q lies on the x axis and its distance from the point P is at most 1. In other words, for the given 
solutions, to a certain degree of accuracy, we may say that the points G and Q describe the same circular 
Keplerian orbit. 

Remark. In the context of the exact formulation, without simplifying assumptions concerning approximations 
for the Newtonian potential, the above assertion is not quite accurate, since the finite dimensions of the bodies 
affect the value of the radius of the orbit in steady circular motion and these radii depend essentially on the relative 
orientation of the bodies. Moreover, for the same constant first integral (the value of the angular momentum) 
and, in some cases for the same orbital orientations, there may be not just one but several admissible orbital radii, 
one of which turns out to be stable while the others are unstable. In this sense, consideration of the problem of 
the motion of celestial bodies in the so-called satellite approximation needs further substantiation. 

2. OTHER TYPES OF RELATIVE EQUILIBRIA 

Let us consider solutions corresponding to 5 = 0. In this case, irrespective of its dependence on the 
value of the parameter a, the tether lies in a plane parallel to the yz plane. To simplify the geometrical 
interpretation, we will assume that a = 0. The properties of these solutions depend essentially on the 
values of the parameters b and c. Put A = X/(Mo2). 

Let b = 0. Then the solutions are 

q=o, 6=&f, &=tl, h=3(<+c)/< (2.1) 

When that is the case, 

y=o, z=c+Ei 

and the tether is parallel to the z axis. For one of these solutions, the tether is situated “above” the 
suspension point while for the other, it lies “below” that point. The quantity A will be positive if Q lies 
outside the segment GP. In other words, the tether cannot be taut if the point Q is situated between 
the suspension point and the centre of mass of the body. 
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Let c = 0. Then, by virtue of the rigid equation (1.4), there are two classes of solutions. For one of 
them 

(2.2) 

and A may take any value other than -1. In this case, the tether will be parallel to they axis or, in other 
words, perpendicular to the orbital plane. The factor A will then be positive if Q is situated between 
the suspension point and the orbital plane. In the other case, 

rl =-b/4, { = E(f* -(b/4)*)%, A=3; y=3b/4, z=E(f* -(b/4)*)% (2.3) 

When this happens the point Q turns out to be at one and the same distance from the orbital plane, 
the distance depending on how far the suspension point is distant from the orbital plane but independent 
of the tether length. Such solutions exist if the tether length is at least one quarter of the distance from 
the suspension point to the orbital plane. For these solutions we have A = 3, i.e., A is always positive. 

Finally, let bc # 0. In that case 

Thus, the point Q is situated on a hyperbola passing through the origin and the suspension point. Draw 
two straight lines I and Z, through the suspension point, parallel to they and z axes, respectively. Then 
A will be positive for points of the hyperbola lying within the strip between the straight line 1, and the 
t axis, but outside the strip between 1, and the y axis. Under these conditions, if the points Q and G 
coincide, there will be no reaction. 

3. SUFFICIENT CONDITIONS FOR STABILITY 

If the constraint is strained in steady motion, in other words, A > 0, one can use Routh’s method to 
investigate the sufficient conditions for stability. To do this, it will suffice to investigate when the restriction 
of the second variation 

26*Wk= M~*(A6t,*+(h+I)tiq* +(&3)&c*) (3.1) 

of the Routh function W, to the linear manifold 

is sign-definite. 
For solutions (2.1), the linear manifold and the restriction of the quadratic form (3.1) to that manifold 

have the form 

For solutions with A > 0 this restriction is always positive-definite, the degree of instability is zero and 
the solution is stable in the secular sense (Fig. 1). Here and below, sets of solutions with a taut tether 

Y 

4 (0) 0 _ 

I 

Fig. 1 
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will be represented in figures by a solid curve, with the degree of instability indicated in parentheses. 
Solutions for which the tether is not taut will be represented by a dashed curve. 

For solutions (2.2), the linear manifold and the restriction of the quadratic form to the manifold have 
the form 

Sf = (i5~ = 01, 2cj2Wk = MC&A&~ + (A - 3)6c2) 

Then the degree of instability equals zero if A > 3. This is the case if the tether length is less than 
b/4. If the tether length is greater than b/4 but less than b, the degree of instability equals one 
and instability sets in. If the tether length is equal to b/4, the quadratic approximation does not enable 
is to determine whether the sufficient conditions for stability are satisfied or not. Under these conditions 
one has bifurcation of the given class of solutions, accompanied by the formation of solutions (2.3). 
For solutions (2.3), the linear manifold and the restriction of the second variation to the manifold have 
the form 

Then the degree of instability of these solutions is zero and they are stable in the secular sense. Since 
these solutions bifurcate from solutions (2.2), it follows by general theorems of bifurcation theory that 
the solution corresponding to the point of bifurcation is also stable (Fig. 2). 

Finally, for solutions (2.4), the linear manifold and the restriction of the second variation to the 
manifold have the form 

P-3) 

A unique real number 

A* = 
3bs - (3CP 

6% + (3$ 

exists for which the second coefficient of the quadratic form (3.3) vanishes, changing sign from positive 
when A > A* to negative when A c A*. Thus, the degree of instability is equal to zero if 

h>O, h>h’ 

In that case one has secular stability. The degree of instability is equal to unity if 

In that case one has instability (Fig. 3). 
The change in the type of instability in this case may be associated with the creation of a pair of steady 

motions. This may be demonstrated, for example, as follows. Let us substitute solutions of the third 

I 2 

I 
Fig. 2 
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Fig. 3 Fig. 4 

type, parametrized with respect to A, into the equations of the constraint. We have 

g(M 
b2 (3c)2 = 12 =-+- 

(h+1)2 (A-3)2 
(3.4) 

The graph of the function g(A) is shown in Fig. 4. The function g(A) has a local minimum at the point 
A*, with 

g(A’)=(b/4)g+(3c/4)4; =g* 

If ZZ3 < g*, then there are only two solutions of the types considered, one of which always corresponds 
to negative values of the parameter A and may be excluded from consideration by the physical meaning 
of the 

up 
roblem. 

If I < g*, one further solution is created, which may correspond to both negative and non-negative 
values of the parameter A = A*, whose value depends on those of the parameters b and c. Depending 
on the situation, the system will have two or three solutions that are meaningful in this formulation of 
the problem. Besides, as the investigation conducted above has shown, it is always true that only two 
solutions are stable. 

Thus, two straight lines, separating the domains of existence of two and three physically meaningful 
solutions (with respect to our formulation of the problem), pass through the points of tangency of the 
astroid and the neighbourhood 

g(A)/ 1% = 1, B2+C2=1, B=bJl. C=c/l 

which were found in [3]. This picture is symmetric about the B and C axes; accordingly, Fig. 5 illustrates 
only the situation in the first quadrant. 

4. POSSIBLE GENERALIZATIONS 

The problem of the motion of aphysicalpendulum suspended on an artificial satellite [3] may also be 
modified and, in the modified form, treated as a problem in the dynamics of a system constrained by 
a unilateral constraint. To that end, it suffices to assume that a weightless rod is attached to the body 

1 4 8 

Fig. 5 
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by a spherical hinge, with another, axisymmetric body, whose axis of symmetry is aligned with the rod, 
sliding freely along the rod. If it is assumed that the suspension point of the rod and a point of the body 
on its axis of symmetry are connected by an inextensible tether, the resulting problem is analogous to 
that treated above. However, the question of whether such a system has any practical value needs further 
investigation. Another problem, in which it is assumed that an inextensible tether connects some point 
of the carrier-body and another, not necessarily axisymmetric, body, turns out to be far more complicated. 
Other generalizations of the problem may be associated with the consideration of aerodynamic, 
electromagnetic, etc. forces applied to the system [7]. 

We wish to thank J. Wittenburg and V A. Sarychev for copies of their published and unpublished 
papers, and V V Beletskii for useful discussions. 

This research was supported by the Jubilaumstiftung der Stadt Wien; the first author’s work was also 
supported by the Russian Foundation for Basic Research (96-15-96051 and 99-01-00785) and the Federal 
Special-Purpose “Integration” Programme. 

1. 

2. 
3. 
4. 

5. 
6. 

7. 

REFERENCES 

SYNGE, J. L, On the behaviour, according to Newtonian theory, of a plumb line or pendulum attached to an artiiicial satellite. 
Proc. Roy. Itih Acad Sex A, 1959,20,1,1-6. 
BLITZBR, L., Equilibrium and stability of a pendulum in an orbiting spaceship. Am J. Phys., 1979,47,3,24X% 
SARYCHEV, V A., Equilibrium positions of a pendulum in an artificial satellite. Kosmich. Issled, 2OCQ 38,4,414-422. 
SARYCHEV, V. A., Relative equilibrium positions of two bodies connected by a spherical hinge in a circular orbit. Kosmich. 
Med.., 1967,5,3,360-364. 
WI’ITENBURG, J., Gleichgewichtskxgen von E&&per-Satellitemystemen. Abhandl Braunschw. Wk. Ges., 1968,20,198-278. 
SARYCHEV, V A., Equilibrium positions of a system of two axisymmetric bodies connected by a spherical hinge in a circular 
orbit. Kosmich. Isskd, 1999,37,2,176-181. 
BELETSKII, V V and LBVIN, E. M., Dynamics of Space Tether Systems (Advances of the Astronautical Sciences, Vol. 83). 
Univelt Inc., San-Diego, CA, 1993. 

Tmnskted by D.L. 


